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Statistical approach to beam shaping
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A method for beam shaping based on fitting the power moments of the final beam intensity distribution and
independent of the optical system particularities is suggested. It is shown how one can analytically calculate
any moment of the final phase space distribution using the moments of the initial distribution and the optical

system transfer map. Numerical tests carried out for a final focus system have demonstrated the usefulness of

the approach developed here.
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I. INTRODUCTION

By beam shaping we mean modification of the charged
particle beam intensity distribution in the phase space at a
point starting from a given input beam, in particular, produc-
ing an arbitrary transverse beam distribution after an optical
transport channel. An important problem here is to provide a
uniform target irradiation given a peaked (usually Gaussian)
initial intensity distribution.

Beam shaping has many applications in science, industry,
and medicine, such as spallation sources for isotope produc-
tion and nuclear waist transmutation [1-5], proton and ion
oncology [6,7], ion implantation, and material sciences.
Other applications include minimization or/and control of
beam halo in high-energy accelerators, colliders, transport
lines, and final focus systems [8—11] to reduce beam loses
and increase the acceptance of a system, to eliminate long
collimation systems, or to increase the luminosity of a col-
lider. Beam shaping is also essential for the high-energy den-
sity physics (HEDP) experiments with intense heavy ion
beams [12-14].

Since the work of Meads [15], the concept of using non-
linear optical elements, such as octupoles and duodecapoles,
for beam shaping has been developed in a number of ana-
lytical and numerical studies during the past 20 years
[1-4,6,7,10,11,13,16,17]. The possibility of transverse shap-
ing using octupoles has been also demonstrated experimen-
tally [18]. Alternative approaches to beam shaping for par-
ticular cases not involving nonlinear optics, such as using a
rf beam rotator or an exotic mode of a plasma lens operation,
have also been proposed [19-21].

Unfortunately, existing analytical methods of beam shap-
ing have only limited applicability for particular optical sys-
tems, low-order transfer maps, or certain shapes of initial
or/and final distributions. These methods also have serious
problems if momentum and geometrical coupling cannot be
eliminated in a system or if the phase-space distribution of
the beam at the positions of nonlinear elements is not flat.

In this paper we present a general approach to beam shap-
ing based on analytical calculation of the power moments of
the final distribution. In Sec. II it is shown how one can
calculate the power moments of the final distribution if the
transfer map of the optical system and the moments of the
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initial distribution are known. In Sec. III we discuss a possi-
bility of beam shaping by fitting the final distribution mo-
ments. In Sec. IV examples of beam shaping calculations for
a HEDP final focus system are presented.

II. POWER MOMENTS OF THE FINAL DISTRIBUTION

Let the coordinates of a particle at the entrance to an
optical (shaping) system be x={x;,x,,...,xs}, Where accord-
ing to usual notation

X1 =X, x2=a=px/p07
x3=y, x4=b=p,/pg,
xs=1, x¢= 6. (1)

These coordinates form three canonically conjugate pairs in
which the transfer map is symplectic.

The initial phase-space distribution of the beam is given
by the probability density function (PDF), f(x). For the cal-
culation examples presented in the paper we assume that
upstream of the optical system the motion of the particles in
transverse and longitudinal phase spaces is independent and
the motion in the transverse (x;,x,) and (x3,x4) phase planes
is decoupled as well

(%) = f12(x1,%2) f34(x3,X4) f56(x5.X6) - (2)

Furthermore, we assume that f|,, f34, and fs¢ are bivariate
normal distribution functions of the corresponding coordi-
nates,

Py X7 = 2x,x,4x,x,) + x7(x)
s = € - 5
rt\Xps Xy o Xp 2 631

rt

(3)

where (xf):o'z, ()Cf):o'2 are the variances of the variables

r t

x, and x, {(xx)=po,o, is the covariance and €,
= \(xf>(x,2>—<xrx,>2 is the rms emittance of the beam in the
corresponding phase plane. The assumption of Egs. (2) and
(3) is certainly a limitation, though this ansatz is applicable

to most of the systems of practical interest. It does not, how-
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ever, reduce the generality of the method being suggested:
the same theoretical approach can be applied to arbitrary
initial beam intensity distribution in the six-dimensional
phase space.

After passing through an optical system, the final coordi-
nates of a particle are X={X;,X,'--X¢} and the PDF of the
beam is F(X). The final coordinates X are related to initial
coordinates x by a transfer map (Taylor expansion) M

={M|,M2,...,M6}

Xy=Mox= 2 Mk,{ix}x'ilxéz- . -xgﬁ, (4)

{ighZig=<N

where N is the order of the transfer map. The elements
M ki } of the vectors M are proportional to the partial de-
rivatives of the final coordinate X, with respect to the corre-
sponding initial coordinates {x;}.

The mth power moment of the final variable X,

= (K1) = f f (X" F(X)dX s)

can be calculated analytically if the initial PDF, f(x) and the
transfer map, M are known

(xp)= f f (X" F(X)dX
=f f (Mo x)"f(x)dx

=ff({i > Mk,{is}xlil"'x26>mf(x)dx

2 <N

ka,{lg}f fx]ll xéﬁf(X)dX

M ), (6)

= X
U Sj=mN

>

UshZjg<mN

where (x/x/y are the moments of the corresponding initial
distributions f,, and the coefficients ™ 11y are the products
of m elements of the vector M. The transition from the final
variables X to the initial variables x in the second line of Eq.
(6) is possible because the transfer map M is symplectic. In
the last line of Eq. (6) we assumed the initial PDF f(x) is
given by Eq. (2).

One can analytically calculate any moment of the final
distribution, (X" X752 --X¢'6) to arbitrary order N of the trans-
fer map in a way similar to that of Eq. (6).

In an important particular case of the normal initial PDF
[Eq. (3)], all the moments w,, ,=(x,"x}) of the order (m+n)
can be expressed in terms of the second moments, (x,z) (xf)
and (x,x,) only. For numerical calculations of high-order mo-
ments f,,, of the bivariate normal distribution, it is conve-
nient to use the following general formula:
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g 2y 2 j
= ny,2\[(m-n)/2] n )|:<xr><x;> _ :|
/“Lm,n <xrxt> <Xr> ]go (21 —<x'xt>2 1

X[(m+n-2j-D)1UQj-1) 1], (7)

if (m+n) is even and u,,,=0, if (m+n) is odd. Here m
=n, (2j-1)!1=1X3X5X---X(2j=1) and (=1)!!=1.
The upper limit in the sum g=n/2 and g=(n—1)/2 for even
and odd values of n, respectively.

For applications, most useful moments of the final distri-
bution are the variances (X;); 3, which give the rms size of
the beam, and the fourth moments (X*), which indicate the
weight of the tails of the distribution (beam halo). For ex-
ample, if Q,=(X*)/(X?)>>3, the distribution has longer tails
than the normal distribution, and if Q,<<3, the tails of the
distribution die off more quickly than those of a Gaussian.
For a description of the beam halo, there are also more com-
plex combinations of the second and the fourth moments
suggested [22], which relay on kinematic invariants and
characterize “compactness” of the beam distribution in the
two-dimensional (2D) phase space.

II1. BEAM SHAPING USING MOMENTS
A. On the classical problem of moments

Let x € R be a random variable with an (absolutely con-
tinuous) distribution function o(x) and a probability density
function (PDF) f(x). The real numbers

MmE(x’"):f xX"do(x), m=0,1,2,... (8)

are the (power) moments of the distribution o(x). If f(x) is
symmetric, all its odd-order moments vanish. Let us summa-
rize some notions and results of the classical theory of mo-
ments [23-25].

The Hamburger moment problem is formulated in the fol-
lowing way: given a set of real numbers {ug, i1, i, ...}, find
all distributions o(x) such that

f Xdo(x) = g, m=0,1,2, ... (9)

-

The Hamburger moment problem is solvable if the Hankel
Matrix (L) 0= 0. In this case it can have a unique so-
lution (a determinate problem) or an infinite number of so-
lutions (an indeterminate problem).

Note that if o(x) = const for x <0 (f(x) =0 for x<0), we
have the Stieltjes moment problem and if o(x)=const for
x & [a,b] (f(x)=0 for x & [a,b]), we deal with the Hausdorff
finite interval problem. A solvable one-dimensional Haus-
dorff problem is always determinate.

In order that a Hamburger moment problem [Eq. (9)] shall

have a solution, it is necessary that [25]
A, =det(p, )l o=0, n=0,1,2, ... (10)

The problem has an infinite number of solutions if and only
if
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TABLE I. Moments and moment-generating functions of normal, uniform, and parabolic distributions.

f(x) Mom Mx(s)
1 x2 om (as)?
Normal a=o __ _ 2m-1)!"'a
a\ZWCXpl: 2a2] exp[ 2
Uniform —a<x<ua L a sinh as
2a 2m+1 as
Parabolic —a<x<ua 3(a*-x7) L coshas sinhas
443 2m+1)(2m+3) (as)®>  (as)?
A =det(u;,)!..o>0, n=0,1,2, ... 11 “ In f(x
n (/*LHJ)[,]_O ( ) f 1 -f'-‘( 2)dx >, (15)
—o X

The moment problem [Eq. (9)] is determinate if and only if

A0>0, ...,Ak>0, Ak+l=Ak+2= =0. (12)

The set of solutions of an indeterminate problem is in a
one-to-one correspondence with a certain subset of the class
of Nevanlinna functions [23].

A sufficient condition for the Hamburger moment prob-
lem to be determinate is that (Carleman’s criterion)
[23,25,29,30]

> (o) P =0, (13)
m=1

A corollary of the Carleman criterion [24,25,31] states that if
the Hamburger moment problem has a solution, where f(x)
=0 and

J i e £(x))%dx < (14)

for some ¢g=1 and 6>0, then the problem is determinate,
i.e., it has only one solution. As it follows from Krein’s theo-
rem [24], if

the Hamburger moment problem [Eq. (9)] has an infinite
number of solutions.
For example, the PDF

o l/a

()

where I'(z) is the Euler I" function, has an infinite number of
moments for any positive a. However, as it stems from the
Carleman criterion [Eq. (13)], the corresponding Hamburger
moment problem has a unique solution [Eq. (16)] only if «
> 1. In particular, the normal PDF with =2 and y=1/ 20°.
If a=<1, this problem has an infinite number of solutions
described by the Nevanlinna formula [23]. Other examples
of moment sets {u,,},_,, which generate indeterminate mo-
ment problems, are provided in [23,24].

A truncated Hamburger moment problem [23]
—a moment problem with a finite set of given numbers (i.e.,
{,u,m}i”zo,V=0,1,2,...)—is solvable if the Hankel matrix I,
=(Mmsn) yyneo >0 [26-28]. In the degenerate case of a singu-
lar Hankel matrix I', the problem of moments (under some
special conditions established in [26-28]) has a unique solu-
tion described in [26,27].

falx;y) = exp(- Yx[?), a,y>0,  (16)

FIG. 1. Layout of the HEDge-
HOB final focus system and the
beam envelopes (not in scale).
Nonlinear-shaping optical ele-
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/ ments (combined octupole and
duodecapole magnets, L=1 m, R

=6 cm), OD-X and OD-Y are
shown as hatched bars.
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If in a neighborhood of the point s=0 there exists the
moment-generating function (MGF)

o0

M) == | efdr=3 g, (17)
m=0 m:

—00

then the PDF, f(x), and its moments can be expressed
through the MGF, M,(s), uniquely,

flx)= LJ e*M (is)ds,
27 ) .

M= M (s) (18)

S s=0

Note that, for example, for the PDF [Eq. (16)] with @< 1, the
MGF exists only at the point s=0 (the zero moment) and
cannot be prolongated analytically to a vicinity of this point.
Therefore the problem in this case is indeterminate.

B. Fitting the moments of the final distribution

In the material given below we deal with a priori solvable
moment problems only. The remaining question, therefore, is
the uniqueness of the reconstruction of a (one-dimensional)
PDF by its power moments, {i,,}_

The conditions of uniqueness of the solution given in Sec.
IIT A hold for the probability distributions of practical inter-
est. For example, moments and moment-generating functions
of normal, uniform, and parabolic PDFs are shown in Table
L. The latter two distributions correspond to the determinate
Hausdorff problems, like any other so-called bounded PDFs,
which are always uniquely determined by their infinite set of
moments. Due to the Carleman criterion, the normal PDF is
determined by its moments in the unique way as well, as it
has been discussed above.

We presume that if the series of Eq. (17) converges fast
enough, it should be possible to approach a desired PDF by
controlling a finite (small) number of nonzero first moments
of the target PDF, {u,,}"_,. This presumption is justified by
the numerical results presented in Sec. IV.

In Sec. I we have shown how one can calculate an arbi-
trary moment (X}') analytically, if the moments of the initial
distribution and the transfer map of the system are known. In
order to calculate the mth moment of the final variable using
the Nth-order transfer map, all the moments of the initial
distribution up to the order mN have to be known. These
moments can be either calculated for a certain analytic initial
distribution or taken from measurements. If an optical sys-
tem contains nonlinear elements (e.g., high-order multipoles
such as octupoles and duodecapoles), then it is possible to
control the moments of the final distribution by adjusting the
fields in the corresponding magnets. In turn, by fitting a set
of moments of the final PDF, F,(X,), one can approach a
desired distribution of any variable X;. This will also auto-
matically account for any coupling between transverse or
longitudinal phase planes and other effects, such as fringe
fields.

The number of final moments to be fitted, sufficient to
approach a goal distribution, depends, in general, on particu-
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FIG. 2. Transverse distribution of the beam intensity after the
system: (a) Gaussian distribution (nonlinear elements were
switched off), (b) parabolic distribution, and (c¢) uniform distribu-
tion. The parabolic (b) and uniform (c) distributions have the same
width; distributions (a) and (c) have equal dispersions.

lar initial and final distributions and on the number of de-
grees of freedom of an optical system, i.e., the number and
location of nonlinear elements. Usually, good results can al-
ready be obtained by fitting the second and the fourth mo-
ments, whereas including into the fit some higher-order mo-
ments (sixth, eighth, tenth, and twelvth) makes only minor
improvements. The quality of the shaping also depends on
the beam emittance and desired width of the final distribu-
tion: the smaller the beam emittance and the larger the spot
size, the better one can approach the desired distribution
shape. In the following section some examples of calculation
using the developed shaping technique for a practical appli-
cation are presented.
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FO)

FIG. 3. Shaping a Gaussian beam to parabolic
distributions of different width (¢=2, 3, and 4
mm): Solid lines, result of shaping (fifth-order
transfer map, the nonzero power moments up to
eighth-order were fitted); dashed lines, ideal para-
bolic distributions; and dotted lines, Gaussian
distributions with the corresponding dispersion.

IV. CALCULATION EXAMPLES

In order to demonstrate usefulness of the suggested theo-
retical approach, a number of numerical calculations on
beam shaping using the power moments has been carried
out. For these calculations, one of the current designs of the
transport and final focus system for the proposed HEDge-
HOB (high energy density matter generated by heavy ion
beams) collaboration experiments [14] at FAIR (Facility for
Antiproton and Ion Research) in Darmstadt, Germany has
been chosen. The layout of the optical system is shown in
Fig. 1.

Two nonlinear elements (combined octupole and duode-
capole magnets) have been introduced into the final focus
system. To minimize the coupling between the transverse
phase planes, the nonlinear elements are placed at the posi-
tions where the beam envelop is large in one plane and small
in the other (see Fig. 1). Realistic initial beam parameters
and Gaussian initial phase-space distribution [Egs. (2) and
(3)] have been assumed. The normalized rms beam emittance
("X é;ms) of (6.3X2.0) mm mrad corresponds to the de-
sign value of the SIS-100 heavy ion synchrotron at FAIR.

Beam physics code COSY INFINITY version 8.1 [32] has
been employed in the calculations. Since this code is based
on differential algebraic methods, it is able to compute an
arbitrary-order transfer map of an optical system. The code
also provides a powerful work environment with the high-
level programing language, COSY, and elaborate optimization
algorithms. The procedures for calculating initial and final
distribution moments have been written in the COSY lan-
guage. Special efforts have been made to optimize the algo-
rithm and procedures, which calculate high-order final mo-
ments, since they are called many times during the fitting
cycle.

Two series of calculations have been carried out: the beam
with initially Gaussian distribution has been shaped to obtain
the parabolic and uniform (see Table I) transverse distribu-
tions in the focal spot behind the system. In both cases, the
calculations were performed for different final distribution

widths (focal spot size) of a=2, 3, and 4 mm.

During the calculations, x- and y-plane moments,
(XY, and {(X3)}h._,, were fitted to the desired values,
simultaneously, in order to obtain equal final distributions
F(X,) and F5(X3) after the system (“anastigmatic shaping”).
A weighted sum of relative residuals,

n th \2
G:Ewm<%), (19)
m=2 E(Qm + Qm)
where Q2=<X,%), 0, =X/ (X,%)mlz, and le’ are the corre-
sponding theoretical values for a certain final distribution

(see Table I) has been minimized.

The transfer map of the system has been calculated to the
fifth order, and the sets of final moments from n=2 to n
=12 were fitted. Although the coupling between the phase
planes in this system is almost negligible, it has been taken
into account while calculating the final moments.

The minimum of the goal function [Eq. (19)] was ob-
tained by varying the octupole and duodecapole field com-
ponents of the two nonlinear elements, as well as the field
intensities in the last four quadrupoles (Fig. 1). After the
fitting, the transverse distribution in the focal spot was deter-
mined by performing a Monte Carlo particle tracking. Typi-
cal examples of the obtained 2D transverse distributions are
shown in Fig. 2.

In Fig. 2(a) the results of the calculation with all nonlinear
field components switched off are presented. The shape of
the initial (Gaussian) distribution, therefore, remains un-
changed, while only the focal spot size (x and y dispersion of
the distribution) varies after the beam passes through the
final focus system. The results of shaping the beam to para-
bolic and uniform distributions of the same width are shown
in Figs. 2(b) and 2(c), respectively. Remarkable here are the
strong suppression of the distribution tails (beam halo) and
the characteristic “rectangular” pattern of the transverse dis-
tributions, resulting from the twofold symmetry of the mul-
tipole magnetic fields.
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F(X)

FIG. 4. Shaping a Gaussian beam to uniform
distributions of different width (see caption of
Fig. 3).

SR A——

A more detailed view on the calculation results is given in
Figs. 3 and 4, where the marginal beam PDFs in the focal
spot, F;(X,) [the distributions F5(X5) look similar, see Fig. 2]
are shown. The results of shaping calculations for the para-
bolic distribution are shown in Fig. 3 and, for the uniform
distribution, in Fig. 4. In both cases, different distribution
widths (focal spot size) of a=2, 3, and 4 mm were chosen. In
the same plots, the goal distributions (dashed lines) and the
corresponding Gaussian distributions (dotted lines) are
shown for comparison.

From the presented calculation examples one can see that,
even for such a simple system containing only two nonlinear
elements, it is possible to approach various transverse beam
intensity distributions with a good accuracy. The small
“knees” on the slopes of the obtained parabolic distributions
(Fig. 3) are caused by the symmetry issues of the optical
system. Although the spikes near the edges of the uniform
PDFs (Fig. 4) cannot be fully eliminated, they are less pro-
nounced if one looks at a distribution near the beam axis
(Fig. 2) rather than at the marginal PDF shown in Fig. 4. The
weight of these peaks depends on the beam emittance and
the desired width of the distribution: better results can be
obtained for a beam-expander system than for a final focus
system.

It is to be noted that the suggested shaping method and
the corresponding computer codes can be applied to any ini-

tial or final PDFs and to an arbitrary optical system. The
applications of the developed beam shaping approach to the
problem of controlling beam losses in high-energy high-
intensity accelerators are foreseen.

V. SUMMARY

A method for beam shaping is suggested. This method is
based on the explicit calculation of power moments of the
final phase-space distribution uniquely determined by its in-
finite set of moments and the minimization of the deviation
of a truncated final moment set from the prescribed values of
the moments. This approach allows one to obtain a desired
beam intensity PDF without making special assumptions on
the optical system characteristics. The presented calculation
examples for the HEDgeHOB final focus system demon-
strate that this statistical approach to the beam shaping works
quite well and is reliable.
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